
Lecture II (EKC) Kosal connections#
-

be the previous lecture are defined the notion of an Ehresmana

connection on a papal G-bundle I→ M
. we had three

equivalent characterisations of such a connection :

① a G-invariant horizontal distribution 2b :

Tp I = her Ap ⑦ Hop and kg)*Hop = Hop .g

② a g-valued
t - form WE RACE 's 9 ) obeying rg*w = Adg, ow

& ③ a family {Aa ER
't
(Ua :3) } obeying Aa = AdgapoApt gpa*E

on Uap (tf ) .

transition function LI Mc form
gaps : Usps→ G

we shall return to this later when we introduce Cartan connections
,

but todays lecture is about the Kosal connections on associated

vector bundles to a PFB
.
If PFBS describe " gauge fields

"

,
their

associated VBS describe " matter fields
"

.
We start by defining the

objects of interest .

19.Defin7ion A real ( nesp . complex) rank - k vector bundle E -9 M is

a fibre bundle whose fibres are k-dimensional neal (nee p - complex) vector

spaces and whose local trocualisatious 4 : e
- ' U → Ux 112k ( resp .

4 : it
- ' U→ Ux Gk) restrict fibrewise to isomorphisms 4 : Ea→{a3x Rts

(resp . 4 : Ea→ {a} x Ek) of real (resp , complex) vector spaces .

We will show that with a ppal G-bundle P M and a finite- dimensional

(real or complex) representation g : G → GLCV)
,
there is associated a

vector bundle E T M
,
and that every vector bundle can be

obtained in that way .



Let P M be a ppal G - bundle and let g : G→ GLCV) be a

tie group homomorphism ( ie : a representation of G) where V is a
finite - dimensional vector space . Since G acts freely on I , it also
acts freely on Ix V via the right action

( pm ) - g = ( pig , gcg's . u)
we let E: = I XGV denote the quotient V ) IG via the above action .

It is the total space of a vector bundle E -07M
, alien B

: I xqV→M
is such that @ ( Ecp, v))) = Elp) , which is well-defined because it (p.g) =# Cp)
It is called an associated vector bundle to the PFB I→M

.

* associated with I via the representation g .

We can understand this bundle via its local construction
.

Let Kaila)}aeA be a tuuialising atlas for I with transition functions
{ Gaps : Ugs→ G} obeying the co cycle conditions .

Then we may

tuuialise I xqV on each Ua ( since LUa×GxVYg = Uaxv) and
the transition functions are { fo Ggg : Uap→ GUV) }

.

More concretely
we define IXGV '

- = tf (Ua×% where ( a , u ) ~ ( a , f (Spca)) - u ) for all

a c- Ups .

We use left -multiplication to ensure G- egovariance with G

actingon the right onI .

Let I M be a G- PFB and E :# XGV EM an anociated VB

with g : G
→ GLCV) . Let TCE) = { s : M→ E / Dos = id m }

devotethe GCM)- module of sections of E .

Let

CE, Lp,v) =L 5 : P→ V I ng't } = gcgs- to } FgEG } bethe G- equivariant

functions P → V .
we give CF (pm ) the structure of a CM)-mod

by declaring f - J = tf } tf C-CEM) and } c- ofCP, V) .

2.0 . Proposition There is a CM)- module isomorphism
-

TLE ) E CE LP, V) .



Proof Let re TIE)
.
Let ya : a-

'

Ua→ Uaxv be a local tuuialisation

and define ta : Ua→ V by Choo) Ca)
= ( as Klas)

.
Ou overlaps Up ,

the local functions ta and op are related by Jala) = fcgggcas) Tsca)
Fae Ugs , where Ggg '- Ups → G are the transition functions of I → M .

Given rt TLE) we define Ea : it
-'Ua→ V by Sal 5)Cpl) -- ECHR)

and extend by { (④
*Sa)Cp)-g ) = g (g)

- '
o Oa (t Cpl ) f p e t

-' Ua
.

Let it Lps = a C- Ugs . There

}pCp) = Jp ( sa (a)&Cpl) = tpfspca.gp.ca>gaCps) = g (gpacasgacp))
- to

op ca )

I 5cg, Cpl)
-to Scgggca)) o Tp(a) = g (ga Cpi)

- '
o ta ca)

= gcgacpl)
-to ↳ ( Saca)) = ↳ (Salas - gaCPD = }

, Cp) .

Therefore the {Sa} thus defined glueto define a function f :P→V,
which obeys raft } = Scg)

- to } by definition .
If ft CM), then

for C- TCE ) and Ida = fora since Ya is fibneeoise linear .

Then by

definition, gcgacps)
- to it* Hoa) -- f (gdp))

'! #f too = Atf scgacp))
- to ¥02

= tf ↳ Lp)

so that the map TLE) → of CP, V ) thus defined is GCM) -linear .

(It is cleanly IR- linear by deft . )
conversely , given a G-equivariant 5 : I→ F

,
we define re TLE ) as

follows
.

Let sa : Ua→I be the canonical local sections . Then let

a- SE 's .
Let a c- Up , so

that

Tyla) = } (Spca)) = } (Saca) Spca)) = fcgggcas)
- t

. } (salat) -

- f (gpalas) . Jala) .

Notice that SE (ittf 's ) = toSaff sit} = f SES
,
so also CMS- linear

•

20.tn/auples

4) Let us
,
w
' be connection one- forms for Ehnesruauu connections 26,26

'
on P→M.

Then rg*w = Adg-cow & similarly for w' . Now if § is vertical
,

w (5) = W'CE) and hence e :=w -w
'
E R" CI i 9 ) is horizontal

(e : cos)=0 for 5 cortical)
.



Let a = SEE C- ACue; g) .

Then ca = SEW- SEW
'
= Aa- AI

.

on Uap , Aa = Adgapo Apt gpa*a and A'a = Adgggo A'ptg,# O
⇒ Ea -- Adgggo Zp . This says that

Leah defines 2 E R' (M 's adI)

where ad I '-= Exec 9 .

(2) HCG closed and M -- GIH
.

Then G M is a opal H-bundle .

Let

s : H→ GL(V) be a rep' . Then E : = GXHV → M is a homogeneous

vector bundle
.
Then ME) I { f : G →V I ftp.hs-gchi-t.flps } where

I is one of (M)-modules
.

On TCE) we have a rep . of G :

(g - f) (g. I := f- ( g-' g. ) .
This is the nep of G induced by the nep .

✓ of H .

There is a sort of converse of the " associated VB " construction
.

If E Es M is a vector bundle ( neal , rank k , say ) we may associate
with it a principal GLCK, IR) - bundle as follows .

We can do it in one

of two ways . Firstly , we can do it via a local description .
Let {Ha,Ya)}aeA be a tamales ing atlas for E , with 42 : # ' Ua→ Uax IRK

and transition functions gap : Up→ GLCK
,R) . We may use the same

transition functions to glue Ua xGLLR.IR) and Upx GURR) along Ugp :
if a e Uap , then (a, A) ~ (as Gap last) which is equivariant under right
multiplication by GLCK, IR) .

the resulting principal GLCR.IR)
bundle is devoted GL LE ) ⇐ M and it follows that E → M

is the vector bundle associated to GLLE ) via the identity (or 'defining)
representation of GLLK.IR) .

The PFB GL CE ) -9 M can also be understood as the bundle of frames

of E Es M .

Let GL ( E) a = { ordered bases for Ea } .

Let u -- Cui , . .. . Un) be a fraud

for Ea .
Then Dcu) = a defines O : GLCE)→ M . If AE GL Ck, IR ) , u . A defined

by @ 'A) i
= JI Uj Aji is another frame for Ea .

Given frames u
,
u
' for Ea , I !



Ae Guk , IR) such that u
'
- u . A

.

Let CU , 4) be a local tnuialisation for E .

We define a reference frame tical for each a e U , by 4 ( Ticas) = (a,e?td
- banish Rk

This defines a trivialization UI : co
-' U→ U x GLCRNR ) by OIL a) = ( a, UTA) . Atul)

where u is a frame for Ea and Atul is the unique element in GLLK.IR) sending
the reference frame a- lat lo U .

let BE Guk , IR ) .

Then UI (u - B ) = ( a , Alu.B) )

where T.la) Ala . B) = u . B = @ Ca) - Acu)) - B
.

'

. Alu . B) = Alas -B showing that

UI in GLCK.IR ) - equivariant
.

Let {(United}*A denote the resulting
tuutalisiug atlas .

Then if a E Ugs and u is a frame for Ea, then

VI. (u) = ( a , Aa la)) where UI ca) - Aa cu) = u .
How are Aacu) and

A-plus related ? How are Taca) and Tp ca) related ?

a- plate = Yj
'

la, ei) = 4J
'
. 4,045

'

(a ,ei) = YI
'

( a , gap(a) e ;)
= Ya

" ( a , § ej ftp.layji )
= JE 4j' ( a, ej ) Splat ji = JE Talal ; gapcalji

E : TpCas = Tyla ) . gap (a)

.

'

- it
,
Ca) . Aah) = U = Tipcat Apca) = Ta - Gqgcas - Apca) ⇒ Aah) = Spca) - Apca)

agreeing with the local description .

21 .
Definition
-

Let E M be a vector bundle
.

By a Kosal connection on E are mean an IR - bilinear map

D : HCM) x TLE) → ITE )
( X , s ) 1-7 17×5

satisfying ① 17µs = f- This
and ⑦ My Cfs ) = X Cf) s t f THS , Fft CM)

,
XE#CM)

,
SETCE )

.

Suppose that E= Pxc, V for some G-PFB PIM .
Then an

Ehresman connection on I induces a Kotto) connection on E
.

For this it is convenient to use the GCN)-module isomorphism
TLE ) E CI (P,V) and we will define 17 on CE

,
V) .



I

let 2b CTP be an Ehresman connection: TpI = Hop to her#Jp
& @g7x-2bp-2bp.g .

We define h : TpI →TPI to be the projector
onto 26 along her# : if we write B c-TpI as Bht } " where SheJlp
& THEY-- o

,
h ( Sj -S

"
. Let h* : TEI →Tp*I devote the dual map,

so (httpB) = a (HBD. Caveat : h't odtdoh (not a poll-back despite notation)
Let XE *CM)

.

Then given p e Ia ,
let } ET

,
I be such that it } -- Xia)

.

We define 17×4 Ip : = 444. (ht) or d"4= h*d4
.

This is well- defined
because if t*E=T*S

'
then h§=hE! Also 17×4 C- C%6P,V) , because

the split TP --U④2b is G-invariant and hence rg*h*=h*rg* . So that

rg*d"4=rg*h*d4=h*rg*d4=h*drg*4=h*d (scgs-too) =SCg5bh*d4=gg5'd"4 .

22.ProposHi# Tl defines a Kosal connection on E .

Proof we check the two conditions.

① Df × 4 = d4 (hlf .})) =D4 ( h#f 's)) -- Itf dutch}) = f . 17×4

② Thx (f.4) = Tx (tf 4) = d (tf 4)(ht) = # df)Chb) 4 + Etf 17×4
= I

*

( dfCI*h 's )) 4 t f. 17×4 = At Cdf Gtx})) Q t f - 17×4
= * ( Xf ) 4 + f . 17×4 = Xf . 4 t f -17×4

.

We will now derive a more calculateorally useful formula for the Kossol
connection of PXGV induced by the Ehresmann connection on P.
Let 4 E CE

.
CP, V ) and let } E ELE) .

We decompose & = h } -15

where it* 5=0 .

Then dutch's) = dollE - Ev ) = dot (E) - DUCEY .

The derivative 54 only depends on the value of EV at a point , so

we can take B" to be the fundamental vector field twos , = Ewes,
corresponding to the G- action . Therefore ,
&" 4 = E.

was ,
4 = ddt (40 rexpctwoss)) ft

. .

-

- ddzglexpc- twos)) ° 4 I
⇐ o

= - glad 's )) o 4

Therefore @4)ChB ) = doll's) tgcwc's)) 04 on
, abstracting E ,

dMUf=d4tgCw)T



Finally , we give a formula for 17×0 where OE TCPXGV) now

viewed as a family {on '
- Ua→ V } of functions transforming

in overlaps as of C.as = gcgypcas) Tsca) fatUap .

d" a = d'T SEH = d" (Hosa) = d (Hosa) oh

= d (SE4) oh = SE (d4) oh
= SE d"4 = SE ( d4 + glad o4)
= d SEY t e (SEW) o sat4
a d ra t g (Aa)

o 02

Hence if X C- HCM) ,

DX ra := XK) + g(AaCx)) . Oa

The following exercise justifies the name covariant derivative

Exercise show that Thera transforms like ra on overlaps ; that is,
on UP I

qog = g (gap) ° RxTp '

be summary , given a G-PFB ?→ M
and a ⇐nite-dime'e)

representation g : G→ GLLVI
, we constructed a VB PXGV→ M .

F-very VB is obtained in this way from its frame bundle .

We then introduced the notion of a Kosal connection on a VB
and showed that an Ehresmana connection on I induces a

Kosal connection on PXqV .
The converse is also true : a Kosal

connection on E induces an Ehresmana connection on GLCE) .

You may wish
to think about howto prove that, but heels a

hint : recall how we built w from the gauge fields .
So given

17
,
mimic that construction to obtain wa from the gauge fields Aa

for D ( S = id ) and show wa -- up on Ups .



Remavhsafterthelecteue

Carlos asked about ne - interpreting the Ehresmana connection along the

lines of the interpretation of a hostel connection as a splitting of
the sequence

. . . →Der (E) t ACM)→ o

←
which suggests the following .

If I→ M is the frame bundle of E, then

D induces an Ehresmana connection on I , which is a splitting of
O → U → TP TM → o

-
se

This would seem to suggest that Der (E ) is related to KCR) ?

Carlos rewashed that the associated VB construction could be viewed as

starting from the troutal bundle Pxv → P ones I and lifting
the ca- action to PxV as inthe lecture and then taking the
quotient bundle :

Px

,

V CPXVXG = pxqv
u

→ t t
p PIG I M

what is it about the G-action which guarantees that the quotient will be a

bundle ? This observation says that sections of PXGV are G- invariant

sections of the tuuial bundle Pxv → P
, e : G-invariant functions P→V .

Guido also observed that one could show the i so TCE ) E CQ(P, V)

more devectly .

A function § EGG(BV) defines r : M → CPXVHG

by o Ca) = [( p, Sep))) for any p E IT
-' Ca)

.
This does not depends on

p because [(pig , Scpg) )) - ftp.g , 5cg5' . }(p))] = [(p , Scp))) .

The incense map r → § seems to require a trivialsateen , since we

need to identify the fibres of E with V .

Is that really the case ?


